
[No audio for this slide]

1

Welcome to the Hazard Services Foundations training course for Focal Points.

This module is the first in the course, and introduces focal points to Hazard Services’
Unified Configuration Workflow.
My name is Eric Jacobsen, with the Warning Decision Training Division. If you have
questions about this course, or technical problems, please use the contact information
listed on this slide.

2

This course is a collection of seven independent modules, which we recommend taking
in the following order.

This module on the unified configuration workflow introduces many of the components
studied in later modules. An overview of key Python concepts is given next. Overrides
discusses strategies for altering Hazard Services files. Metadata is covered next, and its
related topic of Megawidgets… followed by Tools & Recommenders… and then, a basic
overview of the complex topic of Product Generation and Formatting. We also discuss
some of the key settings and alerts that focal points must be aware of.

Each of these modules has its own objectives and quizzes, and can be revisited at any
point.

3

These are the objectives for this module. Please take a moment to review them, then
when you’re done, click next to proceed with the module.

4

Just as the Hazard Services user training demonstrated the consolidation of many
legacy tools into a single workflow, the configuration of these different products has
likewise been unified in Hazard Services. This unification achieves much needed
consistency between the setup of products previously handled by the legacy apps:
RiverPro, GHG, and WarnGen.

In addition, Hazard Services’ underlying framework delivers the added benefit of
flexibility for changing the way information is managed and leads to product creation,
especially relevant as Weather Service strategies evolve.

The primary features of Hazard Services which give it a capacity to extend and envelop
many legacy and future capabilities are: A common language for configuration (chiefly
python, with very few exceptions) with shared code for all hazards; that it is extremely
customizable (almost any component can be customized); and a distinction between
managing hazard information and producing products. Let’s understand how central
this last concept is to the Hazard Services workflow…

5

A key pillar of Hazard Service’s flexibility, and one which infused into the user and
configuration experiences, is how it segregates the management of hazard information
from product generation.

This flexibility is embodied in two core capabilities: Hazards can be identified, shared
and maintained without regard to a product; and, any number of product formats can
be generated simultaneously from shared data and attributes.

6

Supporting this separation behind the scenes, for a given hazard-to-product evolution,
information is centralized in two main storehouses, which for practical purposes, we
simply refer to as “dictionaries” after the Python variable type.

The Hazard dictionary stores attributes which characterize a hazard. This includes the
time, location, and type of hazard, and descriptive metadata, which h will be covered in
more detail shortly. The product dictionary, meanwhile, is an all-encompassing
collection of key product information and phrases, structured to follow the rules that
product dissemination requires.

As a quick clarification, although hazard events are not strictly stored as python
dictionaries, most of the usable data in Hazard Services for both hazards and products
is ultimately presented in dictionary form to users performing advanced configuration
on product output, and so we’ll be forgiven for making this simplification.

The relationship between hazard and product is extremely context-dependent in
Hazard Services, but the process of transforming a hazard to a product starts with a
user clicking “Preview” in the Hazard Information Dialogue.

This very abstract representation of the Hazard Services product flow underlines the
overall break-down which focal-points must expect in their configuration duties. In fact,
neither dictionary maps to an actual, viewable file, but most of Hazard Service’s

7

configuration files revolve around them, and the two dictionaries are crucial variables
throughout the backend code.

7

What are some of the files related to the hazard dictionary?

To start, Hazard metadata, encompassing all of the auto- or user-selected attributes for
a hazard type, are stored in the hazard dictionary for that specific hazard event.
Metadata configuration files, shown here grouped in their own localization directory,
principally define which fields appear on the “Hazard Information Dialogue” window, or
“HID” in short, for a given hazard type, such as the example shown on screen for
Convective Flash Flood Warnings. For each hazard, the HID guides the selection of
attributes that characterizes it, in turn directly dictating what will be stored in the
hazard dictionary. Given the often specialized set of attributes needed to characterize
different hazard types, a separate metadata file will typically exist for configuring each.

Metadata files are fully editable, and focal points have a high level of control over the
HID that symbolizes this stage of the hazard event workflow, simply through configuring
each metadata file. This crucial component is covered more thoroughly in a dedicated
section.

8

Another core component of hazard creation is Tools. In general, Tools are powerful
helpers which act on or help produce hazard events. All tools are python scripts whose
starting focus is on hazard data, but may serve a range of purposes spanning multiple
functional areas of Hazard Services. Most also leverage a powerful data access
framework, to be discussed later.

“Tools,” in fact, is a broad reference which also encapsulates an important subtype,
“Recommenders.” Recommenders are much more specifically designed to present
forecasters with hazard candidates and kick off the population of hazard metadata.

In our conceptual outline of the hazard workflow, tools, and in particular
recommenders, usually lead to metadata, and in this way ultimately help contribute to
the dictionary for a given hazard. Some exceptional tools may, again, reach beyond this
scope, but most almost always start with managing hazard events, and thus primarily
find their home on this side of Hazard Services’ functional division between hazards
and products.

As a crucial component in the hazard event workflow, the python files behind tools
have their own folder in the localization, shown on screen. These files, and their
associated behavior, are completely editable. Tools and recommenders are a rich area
for configuration, and therefore a separate section is dedicated to them later in this
training.

9

Because hazard management is such a fundamental activity in Hazard Services, that
part of the workflow is explained in more detail here.

Localization files for hazard and metadata specification are among the most
straightforward to view and edit in Hazard Services, which is fortunate given their
importance. In fact, just three central files govern the definition, categorization, and
mapping of hazards to metadata.

To be of any use, a hazard must first and foremost be included in an all-encompassing
dictionary of possible hazard types, aptly named “HazardTypes.py”. This file contains
fundamental properties for hazards, and while many of these are fixed by directive,
such as whether it can be extended in time or area, other properties like default
duration can be edited here and ultimately help populate hazard information.

Because the list of hazards is sizeable and will only grow as other capabilities are
added, a categorization file (HazardCategories.py) is provided to organize these into
groups. This relatively straightforward file includes a list of default categories and the
hazard types belonging to them, and, as with almost everything in Hazard Services, it is
completely editable, allowing groups to be added, removed, or changed. One of the
main purposes of this grouping is organize and simplify the user experience to help
focus on particular tasks.

10

Each hazard type is associated with a metadata file, except in the unlikely case where no
attributes are needed. This mapping is handled with the HazardMetaData.py file, shown
here. Due to the unique nature of most hazards and the specificity required of their
metadata configuration, many hazards are mapped to a metadata file of their very own.
However, multiple hazards may share a single metadata file if their pool of potential
attributes is nearly identical.

10

All the hazard-related configurations support the job of identifying and characterizing,
through the HID, each hazard that might be presented to the forecaster.

The transition from hazard to product is embodied in the “Preview” button of the HID.
Symbolically, this action leaves the world of hazard configuration and shifts to the
product generation side of Hazard Services.

Ultimately one or more hazard dictionaries translate to one or more product
dictionaries, in a complex process which in actuality is a combined effort of the product
generators, formatters, and a variety of supporting utilities. This product workflow is
the topic of the next slides.

11

Hazard Services’ product side can be summarized with the overall purpose of
consolidating and organizing information related to products, and formatting the
desired output. This deceptively simple summary encapsulates a massive amount of
logic, utilities, and interdependent files.

Before any generation begins, the authoritative Product Generator Table determines
how ALL hazards are mapped to a generator, and to various previewed or issued format
options.

The product generator consolidates any needed information, which in addition to
metadata/attributes from the hazard dictionary includes information about active
products, and initializes a dictionary for each product it determines to be needed. It
organizes this dictionary with placeholders for the high-level product structure.

Next, the chosen formatters (with Hazard Services enabling multiple to act on a
product) work directly with data from the product dictionary, and construct the low-
level product parts which are then translated into text and phrases. These phrases and
parts can also be contributed back to the product dictionary, which allows for shared
phrases and maintaining consistency across formats.

Again, product generation is a complex process consisting of many interdependent files.
Some of these files, and important features of this product generation in general, will

12

be covered in more detail later in a dedicated section.

12

Although we’ve covered the big picture of both hazard and product configuration, one
other central aspect to Hazard Service’s management of data remains. This has to do
with where hazard and product data are shared or stored.

Hazard event data, recall, is stored in a dictionary of its own for each event. These
event-specific dictionaries are managed by a background service called the “Registry.”
This registry serves two important roles: First, this service synchronizes information
about all hazards and updates this information on other local consoles; in addition, the
registry passes local hazard event information to a federation which manages all
national hazards. This two way exchange with the federation, which operates on
ANCF/BNCF, or TNCF during tests, allows local hazard events to be visible on remote
consoles, and for hazards from other sites to be retrieved for display on local machines.
Specifically, events are retrieved for sites which your office has configured as “backup”
or “visible” sites in Hazard Services. This exchange is limited only to hazard event
information, not products, and exemplifies the very distinct treatment of hazard data
from their product counterparts in Hazard Service’s workflow.

Although this distribution of hazard event data supports live, situational awareness… it
should be noted that they and their backend registry objects are NOT included in
routine or case archiving. From an archive dataset perspective, the hazard event
dictionaries are simply a means to an end, that end being product generation, and thus
are not retained indefinitely.

13

Persistence of the product dictionary is quite different. In contrast to hazards, the
product dictionary is NOT synchronized through the registry and stays within the local
office.

In the local metadata database, Product dictionary elements are stored in a
“productData” table, and a “productText” table exists solely to track user edits which
were made to product parts through the product editor. This latter table in fact stores
the edits that, if available, are recalled in the product editor when the “previous text”
option is checked for a particular field.

In general the product dictionary is not easily reviewed, and has no corresponding tool
like the “event details viewer” for hazards. In addition, neither of these tables are
currently archived… product dictionaries are basically internal data that help Hazard
Services do its job.

Although the product dictionary itself is not shared with remote sites, the standard text
products which are their end result are distributed as before.

14

One key aim of this section was to provide a birds eye view of the entire Hazard
Services workflow from hazard management to product generation. The entire
workflow is depicted on this slide, emphasizing the core components which interact
with the two main divisions: hazard, and product. Separate modules in the rest of this
training dive into these topics in greater detail.

The remaining slides in this section transition from this walkthrough of the
components, to emphasizing some of the key overall characteristics of Hazard Services.

15

As the focal point navigates each component to manage the way Hazard Services
operates, a central characteristic will be the openness of virtually all of its code.

In Hazard Services, almost limitless customization can be applied to: The front-end
GUIs and dialogues, particularly including the Hazard Information Dialogue; the tools
and recommenders and what each does; the back-end set of hazards definitions and
Metadata; the back-end processes of product generation and formatting; and much
more. Fundamentally built on very dynamic python files, possible configurations range
from tweaking a small interface component in the HID, to completely changing the way
a product formatter works.

As more and more legacy capabilities are rolled into Hazard Services, this dynamic
nature will allow the underlying single workflow to have a powerful degree of flexibility.
But with such freedom, focal points should be particularly cautious about best practices
in their configuration, making precise edits to minimize any potential negative impacts,
even while the openness of python allows any edit to be made.

16

Hazard Services will gradually take the place of legacy software in producing
operational products, starting with hydro, then winter, marine, and so on. Rather than
immediately retiring the legacy applications, however, Hazard Services was
implemented in a way that allows temporary parallel use of it and legacy applications,
formally referred to as “interoperability.” This means an ability to issue products in one
context that are accessible in another.

However, it does require that focal points maintain parallel systems so that their
operation is consistent with each other. Many configurations are not shared between
legacy applications and Hazard Services, thanks in part to the different file formats used
for configuration by each. For example, for the geospatial config thresholds in
WarnGen, Hazard Services has its own independent files which are not synchronized.

In general, focal points should expect to front-load some time synchronizing Hazard
Services’ baseline performance with essential customizations in their own legacy
applications. This will not only support functional interoperability while the capability
exists, but is a fundamental task in migrating to Hazard Services.

To re-emphasize, however, while interoperability with legacy applications exists initially
to support the transition to Hazard Services, the corresponding legacy software product
generation will be discontinued sometime after full deployment.

17

Related to maintaining seamless, local configurations, focal points must also be
conscious of the need to maintain localizations for backup sites.

Hazard Services’ interface and registry-based hazard sharing supports convenient
transfer to backup operations (covered more in the “Settings and Alerts” section), but,
like many legacy applications, it requires timely retrieval of those site’s localization files
to work properly. Beyond initial steps to set which sites can be backed up, regular
updates of the Hazard Services localization directory should be folded in with existing
transfers of a backup sites most recent utility tree.

18

Finally, although the upcoming modules throughout this training will explore many
aspects of Hazard Services configuration, focal points facing the breadth of topics and
configuration needs will certainly need additional support and documentation. A few
key support resources are highlighted here.

The Hazard Services focal point guide, maintained by developers at the Global Systems
Division of ESRL, is an in-depth document covering many of the upcoming topics, and
will be referenced heavily.

For individual support, the following channels are available depending on the situation.
Generally, for software errors or crashes, contact the NCF. For all other questions
including configuration, during site tests and BEFORE official deployment, focal points
can either contact NWS.HazardServicesTeam.Staff@noaa.gov, or use the a
Hazard_services_support room available in NWSChat. After deployment, support will
transition to the awips2dev email list, which can be used for posing questions to the
community, whose responses can benefit all subscribers.

19

Let’s review some of the many important takeaways covered in this section.

One configuration workflow now applies to all hazards and products, once they are
incorporated into Hazard Services, regardless of the legacy application they were
previously managed through.

Thanks to its basis in very flexible python, almost ANYTHING can be edited, from the
GUIs to the hazard metadata to the product formatting workflow, and more, greatly
increasing the flexibility of this one workflow.

At the ground level of this workflow is a crucial distinction between hazard and
product, reflected in the different components of Hazard Services and their
configurations. Data related to hazards can be independently managed and shared, this
task severed by critical, configurable components like hazard type definitions and
categories, hazard-specific metadata, and recommenders. Meanwhile, a flexible
framework for generating products handles simultaneous, multi-format generation,
with configurable assembly and phrasing. Symbolically, these two functional groups are
bridged when the user clicks “Preview,” which transitions from the hazard world to
product generation.

We also introduced the importance of the registry for synchronizing hazard data locally
and remotely, which facilitates cooperation and planning from a hazard-centric

20

perspective.

In contrast, the fundamental product dictionaries and data are not synchronized, and
remain local, although the resulting text products do get distributed exactly as before.

20

In addition, we covered how, as Hazard Services is deployed, it will temporarily allow
parallel use of the legacy software capabilities which it replaces, referred to as
“interoperability.” During the limited overlap period where the legacy software is still
supported, interoperability does require focal points to maintain legacy systems in
parallel with Hazard Services for functional transition, when needed.

Backup operations are also supported in Hazard Services, with arguably some
enhancement to this experience coming from the easy switching of sites, as well as the
sharing of Hazard information through the registry. However localizations must, as
always, be diligently updated for backup sites, now including Hazard Services
localization directories. Retrieving these localizations remains, for now, a manual
process.

The coming modules will dive deeper into many of the components discussed here, and
other Hazard Services features. But for support, we’ve highlighted the availability of the
Hazard Services Focal Point Guide for more in-depth reference on each component and
their configuration. We’ve also introduced several channels for soliciting help, including
the NWS.HazardServicesTeam.Staff@noaa.gov email, and a dedicated NWS Chat room,
both to be used during site testing, and, following deployment, the awips2dev listserv.

21

[No audio on this slide]

22

23

